

Atmospheric feedbacks in HadGEM3

Alejandro Bodas-Salcedo

Jane Mulcahy, Tim Andrews, Keith Williams, Mark Ringer, Paul Field, and Gregory Elsaesser

Background

$$\Delta N = F + \lambda \Delta T$$

EffCS, estimated using a Gregory plot and abrupt-4xCO2 experiments.

Model	EffCS (K)		
HadGEM2		4.4	CMIP5
HadGEM3-GC2.0		3.2	
HadGEM3-GC3.1		5.5	CMIP6

Large fraction of EffCS increase between GC2.0 and GC3.1 driven by **atmospheric feedbacks**.

(Andrews et al, submitted)

Experimental design

```
#16 Improved treatment of gaseous absorption
                                                                   ⇒GL:#30 Further Improvements to the surface albedo
#17 New ice optical properties
                                                                   ⇒ GL:#31 Implement the COARE4.0 Algorithm
#44 Convective cores
                                                                   ⇒GL:#38 Revised roughness lengths for sea ice
#52 Implement new warm rain microphysics scheme
                                                                   ⇒ GL:#43 Improved parameterisation of the ocean surface albedo in JULES
#58 PC2 / Convection Coupling
                                                                   ⇒GL:#45 Pass rain fraction to JULES surface hydrology
#60 UKCA-MODE aerosols with offline oxidants
                                                                   ⇒GL:#56 Fix bit-comparison issue with TRIP river routing in UM/JULES.
#64 Improved updraught numerics in the 6a convection scheme
#83 Include forced convective clouds
#84 CAPE closure for deep & mid level convection dependent on large-scale vertical velocity
#87 Implement heating due to gravity-wave dissipation
#89 Replace fixed RH crit profile with a variable one
#98 Improvements to PC2 for high ice clouds (cirrus)
#117 Introduce standard GA stochastic physics settings
#120 Turbulent production of liquid water in mixed phase clouds
#127 New ancillary for topographic index data
#134 Retuning of low cloud
#135 Moisture advection: Hermite Cubic Vertical Interpolation and Priestley Conservation
#138 Minor bug-fix to methane oxidation scheme.
#141 Fix Raymond filtering in ENDGame global orography ancillaries.
#145 Retune the adaptive detrainment parameter (RDet) in response to the 6A convection scheme
#146 Priestley conservation of mass weighted potential temperature
#151 Switch on temporary logicals not used in pre-GA7 science configurations.
#153 Reduce atmospheric solver tolerance.
#154 Generate Kettle (1999) DMS datasets through general regridding.
#155 Generate Reynolds SST ancils via general regridding.
#156 New land fraction files for coupled models for use with the GO6.0 grid.
#158 Fix bit-comparison issue with TRIP river routing in UM/JULES.
#161 Set reference height used in the ENDGame w-damping code to 85km rather than 80km in L85 runs.
#162 Retune cloud threshold for shear dominated BL in GA7.
#165 Non-orographic (USSP) GWD scheme launch factor tuning in response to GA7.0 changes
```

#11 Implement new ice PSD #13 Revised cloud top entrainment

#15 McICA upgrades

Model changes between GA6 and GA7

→ GL:#4 Implementation of the multilayer snow scheme

Package: collection of changes that are logically related.

Experiments:

- amip and amip-p4K
- 1979/01 1989/12 (11 yr) and 1979/01 – 2014/12 (36 yr)
- N96L85
- 30+ experiments
- 1000+ years of simulations

Packages					
Convection					
Radiation					
Microphysics and L-S precipitation					
Cloud					
Boundary layer					
Dynamics					
Gravity wave drag					
Stochastic physics					
Aerosols					
Effective Radiative Forcing					
Land surface					

Package testing

Microphysics

- New mixed-phase cloud scheme
- Changes to warm rain microphysics
- Upgrades to McICA

Aerosol + Erf

- UKCA-MODE: new aerosol scheme
- Scaling of DMS to account for marine organic
- Cloud droplet spectral dispersion
- Tuning of mixed-phase scheme

Controls of feedback differences

	clear scat	cloud	cloud amt	cloud scat			
70°S - 30°S							
GA6.0	-0.14	0.01	0.68	-0.61			
GA7.1	0.07	0.86	0.24	0.62			
$AerMic_On$	0.08	0.73	0.15	0.60			
Aer_On	0.10	0.44	0.06	0.40			
Mic_On	-0.00	0.33	0.11	0.22			
50°S - 30°S							
GA6.0	-0.07	0.68	0.97	-0.22			
GA7.1	0.00	0.96	0.32	0.63			
$AerMic_On$	0.01	0.89	0.22	0.69			
Aer_On	0.03	0.53	0.08	0.46			
Mic_On	-0.01	0.42	0.18	0.25			
70°S - 50°S							
GA6.0	-0.26	-1.07	0.23	-1.24			
GA7.1	0.17	0.79	0.13	0.66			
$AerMic_On$	0.19	0.54	0.04	0.51			
Aer_On	0.21	0.31	0.02	0.30			
$\mathrm{Mic}_{-}\mathrm{On}$	0.00	0.21	0.01	0.21			

(Taylor et al., JClim, 2007)

APRP method

- Contributions from amount
- and optical depth (1:2).Larger contribution from 30°S-
- 50°S.
 CF feedback change much weaker in 50°S-70°S.
- Optical depth feedback changes partition quite similar in both regions. Mic_On slightly stronger in 50°S-70°S.

Separating **ALWP** & **AReff** contributions

Aerosolcloud interaction

Met Office Hadley Centre Summary

- Changes in midlatitude cloud feedbacks explain the differences between GA6.0 and GA7.1.
- The new aerosol and mixed-phase schemes are responsible for most of the feedback differences.
- Aerosol acts through r_{eff}, and mixed-phase through LWP. Both the climatology and the response matter.

RESEARCH ARTICLE

10.1029/2019MS001688

Special Section:

The UK Earth System Models for CMIP6

Key Points:

Strong Dependence of Atmospheric Feedbacks on Mixed-Phase Microphysics and Aerosol-Cloud Interactions in HadGEM3

A. Bodas-Salcedo¹, J. P. Mulcahy¹, T. Andrews¹, K. D. Williams¹, M. A. Ringer¹, P. R. Field¹, and G. S. Elsaesser²

Met Office Hadley Centre Future work

More work needed to assess the realism of midlatitude feedbacks using observational sensitivities, i.e. response to *cloud-controlling factors (Myers and Norris, 2016)*.

- Strong CF feedback in lower midlatitudes, is it realistic?
- Phase-change feedback in higher midlatitudes
- Aerosol-cloud interactions

Improved observations of (climatology and variability):

- Supercooled liquid clouds
- τ: LWP, CDNC and effective radius